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Fit in your pocket / bag
Communicate
Create
Access information
Play Angry Birds
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Why not this?
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Touchscreen Button



Physical controls
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Touchscreens
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Touchscreens
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The Human Body as an 
Interactive Computing Platform

Goes where we go
Always-available input
[Tan 2010, Saponas 2009]

Skin is the largest organ
Two square meters of surface area
Hand alone offers more surface area than a smartphone

Kinesthetic senses
Rapidly and accurately position our body
Fine tuned muscle memory, hand eye coordination
Eyes free interaction
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Acoustic Sensing
Enhanced transmission through solids/liquids

Longer transmission distances
Better preservation of signal (high SNR)

Intra-object acoustics less prone to outside interference

Allows surfaces to be appropriated
Remote, indirect sensing 
Without permanent instrumentation
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Taps on the Body
Input is by tapping on body, 
like touchscreen

Taps on body create
unique acoustic signatures

Signature affected by:
Density of tissues
Anatomical features
Joints
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Acoustics on the Body
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Longitudinal (compression) waves



Acoustics on the Body
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Transverse surface distortions (ripples) 
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Sensing
Cantilevered mass on piezo film

Mass alters resonant frequency
Resonant frequency amplifies energy
Natural band pass filter

We use 10 sensing elements
In two arrays of five
Acoustic spectrum from 25 to 78 Hz

Constructed prototype Armband
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Tacoma Narrows Bridge
1940
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Upper Array 25 Hz 27 Hz 30 Hz 38 Hz 78 Hz

Lower Array 25 Hz 27 Hz 40 Hz 44 Hz 64 Hz
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Projected
Interface

Pico-Projector

Sensing 
Armband
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Segmentation and Processing

Sensors provide high level of noise suppression
Segment using fixed thresholds on the exponential average

Sensors provide acoustic information in different bands
Derive band ratios, frequency distributions, other features

Train SVM classifier; use to determine location of tap

Bind functions to different locations
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Experiment
13 Participants (7 female)

Age ranged from 20 to 56 (mean 38)

BMI ranged from 20.5 (normal) to 31.9 (obese)

Three input location sets
Fingers (5 locations)
Whole arm (5 locations)
Forearm (10 locations)
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Procedure
Users provided 3 rounds of example input

10 taps to each input location
Next round started after all locations were tapped

Accuracy evaluated:
Presented users a simple text stimuli (e.g., “tap your wrist”)
Each input location appeared 10 times, random order
Live segmentation and classification accuracy
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Fingers (5 locations)
We have exceptional dexterity with 
our fingers
Discrete and named (e.g., thumb, ring)
Linearly ordered
Downside: Hard to sense

Mean accuracy:  87.7% (SD=10.0%)
Segmentation accuracy:  ~100%
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Whole Arm (5 locations)

Discrete and well named  (e.g., wrist, palm)
Acoustically unique

Mean accuracy: 95.5% (SD=5.1%)
Eyes-free mean accuracy: 85.0% (SD=9.4%)  
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Whole Arm (5 locations)

Below-elbow mean accuracy: 
95.5% (SD=5.1%)

Above-elbow mean accuracy: 
88.3% (SD=7.8%)  
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Forearm (10 locations)

Attempt to tax system accuracy
Used stickers instead of names
Two training rounds (due to time)

Mean accuracy: 81.5% (SD=10.5%)
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Forearm Groupings & Accuracies
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Walking and Jogging
Male participant

2.3 mph walking
4.3 mph jogging

Female participant
1.9 mph walking
3.9 mph jogging

Three Input locations:
Arm | Wrist | Palm
Provided 10 input examples per
location while walking/jogging
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Walking and Jogging
No false positive inputs
100% true positive segmentation
Mean classification accuracy 93.4%

Four false positives (over six minutes)
100% true positive segmentation
Mean classification accuracy 71.7%
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OmniTouch
UIST 2011
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Hardware
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Hardware
Depth Camera

Pico Projector

92



93



Finger Segmentation
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Finger Segmentation
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Identifying Surfaces
Find candidate surfaces for projection
3D connected components
Compute real world size

Surfaces smaller than a hand are discarded

Compute surface X/Y/Z position and orientation

100



101

Identifying Surfaces

Depth Map 3D Connected
Components



Projected Interfaces
Compositing interfaces in virtual 3D scene

Treat interfaces as planes in 3D space
Treat projector like a virtual camera; project viewport image
Scaling, z-ordering, perspective transformation, etc. comes for free
Ray cast fingers as input points onto active interfaces

Requires projector/camera calibration
Convert 3D spatial coordinates to 2D projected points
[DeMenthon '95, Wilson '10]

Interfaces can be authored in real-world units 
and coordinates
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Projected Interfaces
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Defining Interactive Areas
Projected interfaces

Where to center?
How tall/wide?

Approaches
One-size fits all
Classification driven
User defined
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Projected Interfaces
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User Defined Interfaces



Evaluation

106

12        Participants (6 female)

9          Targets (3x3 pattern); random order

4          Surfaces (hand, arm, pad, wall)

3          Distances (hand, pad conditions)

6048    “Clicks” collected
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Hand   on body
Arm     curved, additional on body surface
Pad     object held in hand
Wall     fixed surface in the environment

Evaluation
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“Click” Precision
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OmniTouch
[Holz and Baudisch '10]



“Click” Precision
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OmniTouch
[Holz and Baudisch '10]



“Click” Precision
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OmniTouch
[Holz and Baudisch '10]



“Click” Detection

114

Of our 6048 crosshair “click” trials:
96.5%  correctly had one click event
0.8%    had no click event (i.e., system missed click)
2.5%    had two click events
0.1%    had three click events

With a 500ms timeout click rejection:
98.9%  click detection accuracy



Drag Spatial Accuracy
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No significant difference in X, Y, 1D, 2D trials
Mean deviation of 6.3mm (mean SD=3.9mm)



Armura
TEI 2012
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Interface Design
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Interface Design



Menuing (gestures)
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Menuing (gestures)
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Menuing (gestures + position)
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Menuing (gestures + position)
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Menuing (gestures + position)
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Modal Layout and Control
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What are ideal on-body surfaces?
Friends/strangers using on-body interfaces?
How do users feel about projected Interfaces?
Where is it appropriate to touch own body?
Where should interfaces be located?
How should they be laid out?
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Next steps
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Next steps



Thank You
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